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Abstract—We present a new method to accurately simulate
arbitrarily shaped coupled waveguides and ring resonators 100
to 1000 times faster than existing techniques. The new method
uses a novel analytic formulation and multivariate polynomial
regression to map the physical dimensions of the simulated
waveguides to the complex cross-coupling coefficients of input
and output ports, giving the full scattering parameters. We
benchmark the results against full-wave solutions and illustrate
its use with several application examples.

I. INTRODUCTION

Waveguide coupling is one of the backbones of future
photonic integrated circuits. Many devices leverage coupling
for power-splitting, filtering, wavelength-selective dropping,
etc [1] [2]. However, simulation of these devices using full-
wave methods such as finite-difference time domain (FDTD)
is computationally expensive.

Several compact models have been proposed to avoid full-
wave methods and simulate complex photonic structures.
Power splitting in directional couplers, for example, has
been designed through asymmetric-waveguide phase control
sections [1]. Other methods based on the transfer matrix
method vary the shape of geometry to arrive at desired
power splitting ratios [3]. Some directional coupler models
discretize the coupler into multiple uniform coupling regions
and approximate the effective indices of each region using
exponential regression [4]. Previous implementations of the
this method have been demonstrated for specific devices such
as half ring and racetrack resonators, but are not implemented
for directional couplers with arbitrary geometries such as
irregularly shaped power splitting devices. They also have an
additional limitation of only tracking magnitude, but not the
phase, of the output fields thereby restricting the ability to
generate full scattering parameters.

To overcome these limitations, we propose a new model,
which we name SCEE (simulator of photonic coupling devices
based on eigenmode estimation). SCEE extends a recent
model proposed by M Bahadori et al. [4], adding phase
correction terms, leveraging multivariate linear regressions,
and implementing numerical quadratures techniques. This
allows simulation of scattering parameters (amplitude and
phase) of coupling devices with arbitrary geometries. With
full scattering parameters, arbitrary coupling devices can be
concatenated with any other devices in full photonic circuits.
When compared to Lumerical’s full-wave 2.5D varFDTD,
SCEE performs an order of magnitude faster for 20 µm
devices and nearly 2 orders of magnitude faster for 40 µm

devices. Furthermore, since SCEE relies entirely on the speed
at which the scale-invariant numerical quadratures are com-
puted, and is thus also scale invariant. SCEE can therefore
handle devices of arbitrarily large dimensions.

These improvements enable the design of novel devices
such as ring resonators with multiple coupling regions and
unitary transformers using cascaded devices. Furthermore,
other devices that require hours of simulation time using full-
wave methods can now be simulated in seconds. Additionally,
because SCEE performs much faster than full-wave methods,
researchers can employ advanced forward and inverse design
techniques, as demonstrated below, through optimization.

The rest of the paper is outlined as follows: in section II,
we briefly review the model proposed by Bahadori et al. [4].
In section III we give an outline of extensions to the model
that enable accurate phase retrieval and arbitrary waveguide
geometries and paths. In section IV we discuss the results
of SCEE compared to full-wave methods in both speed and
accuracy. Section V shows how SCEE can be used to design
custom power splitters, ring-resonators with multiple coupling
regions, and unitary transformers using cascaded devices.

II. MODELING OF DIRECTIONAL COUPLER

In this section, we review the essential features of a recently
proposed compact model [4] for simulating the full scattering
parameters of directional couplers. In section III, we show how
this model can be extended to include phase scattering terms
and arbitrary geometries.

In nearly all integrated photonic couplers, there exists a sub-
wavelength region in which the gap between waveguides is
small and optical coupling takes place. By discretizing this
region and parameterizing it by a nonuniform gap distance
between the two coupling waveguides, each discrete section
may be assumed to be a directional coupler with uniform gap
distance as shown in Fig. 1(a). Each of these sections may be
described by a transfer matrix of the form

Ti =

[
ti κi
κi ti

]
= exp(−jφi)

[
|ti| −j|κi|
−j|κi| |ti|

]
, (1)

where
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Fig. 1. (a) Schematic for splitting directional coupler of length zmax−zmin into N discrete uniform couplers each with length ∆z. (b) Exponential regression
of even and odd supermodes.

φi =
2π

λ
∆z

neven[gi] + nodd[gi]

2
, (2a)

|ti| = cos

(
2π

λ
∆z

neven[gi]− nodd[gi]

2

)
, (2b)

|κi| = sin

(
2π

λ
∆z

neven[gi]− nodd[gi]

2

)
. (2c)

In Eqns. (1)-(2c), gi is the uniform gap distance between
waveguide edges, t represents the scattering parameters out
of the through-port, κ the scattering parameters out of the
cross-port, λ the wavelength, ∆z the length of the discretized
section, and neven[gi] and nodd[gi] the effective indices of
the even and odd supermodes as a function of gap distance.
neven[gi] and nodd[gi] are fitted with an exponential regression
as shown in Fig. 1(b) and are estimated as a function of gap
g with equations

nE ≈ neff + aE exp(−γE g), (3a)
nO ≈ neff − aO exp(−γOg). (3b)

As shown graphically by M. Bahadori et al. [4], this
approximation holds well for g > 100 nm, but underestimates
the coupling by 5-10% when g < 100 nm, especially in
regions of large curvature.

The transfer matrix T of the entire coupling region is found
by cascading the transfer matrices of the discrete regions, T =
TN ×TN−1× · · · ×T2×T1. This final transfer matrix can be
rewritten as

T = exp(−jφ+)

[
cos(φ−) −j sin(φ−)
−j sin(φ−) cos(φ−)

]
(4)

where

φ+ =
2π

λ

N∑
i=1

neven[gi] + nodd[gi]

2
∆z, (5a)

φ− =
2π

λ

N∑
i=1

neven[gi]− nodd[gi]

2
∆z. (5b)

Thus, the coupling coefficients, t and κ, corresponding to
the through-port and cross-port may be computed using Eqns.

(4), i.e. t = e−jφ+ cos(φ−) and κ = −je−jφ+ sin(φ−).
Further details of this derivation can be found in [4].

As the number of discrete coupling regions N →∞, ∆z →
0, Eqns. (5a) and (5b) become integrals. Using the exponential
regressions mentioned in Eqns. (3a) and (3b) the magnitude
of the coupling coefficients may be expressed as

|κ| = sin

(
π

λ

∫ zmax

zmin

aEe
−γEg(z) + aOe

−γOg(z)dz

)
, (6a)

|t| = cos

(
π

λ

∫ zmax

zmin

aEe
−γEg(z) + aOe

−γOg(z)dz

)
. (6b)

where g(z) gives the gap distance between the waveguides
for the corresponding value of z along the coupling region.

While this model accurately describes the amplitude of
the transmitted and coupled light waves, it has two major
limitations. The first is that it does not accurately predict the
resulting phase terms of the coupled light associated with the
amplitudes |κ| and |t|. The phase is a critical parameter for
building resonant devices and cascading multiple devices to
form complete photonic circuits. The second limitation is that
it does not allow for arbitrary waveguide geometries and paths.
In section III, we extend this model to include both of these
features.

III. MODEL EXTENSIONS

A. Phase Correction Terms

We begin by showing how to extend the model described
above to include an accurate calculation of the phase of the
transmitted and coupled light waves. Similar to the derivation
of the field magnitude Eqns. (6a) and (6b), we find the phase
by taking the limit in which the number of discrete coupling
regions N →∞, ∆z → 0, which makes Eqns. (5a) and (5b)
integrals. By examining the φ+ term and substituting in the
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Fig. 2. SCEE overview. First even and odd eigenmode effective indices were generated for various waveguide gaps with fixed geometry (1). An exponential
regression was fit to get parameters aE , γE , aO , and γO (2). Next a polynomial regression maps waveguide properties (wavelength, width, thickness) to
parameters aE , γE , aO , and γO (3). Then to calculate s-parameters a numerical quadrature is done using eqns 6 and 8 (4). The s-parameters are then used
to calculate the coupling of arbitrary directional couplers (5).

exponential regressions found in Eqns. (3a) and (3b), we arrive
at

6 κ = exp

(
− j
(π
λ

∫ zmax

zmin

aEe
−γEg(z) − aOe−γOg(z)dz

+
2π

λ

∫ zmax

zmin

neffdz +
π

2

))
, (7a)

6 t = exp

(
− j
(π
λ

∫ zmax

zmin

aEe
−γEg(z) − aOe−γOg(z)dz

+
2π

λ

∫ zmax

zmin

neffdz
))

(7b)

Note that the last term in Eqns. (7a) and (7b) is the phase
change of a straight waveguide of length zmax − zmin. This
is a result of the assumption that our waveguide is made
up of uniform couplings. To remove the dependence on this
assumption, we modify the integrals to instead integrate over
the arc length of waveguides with potentially arbitrary paths.
Letting zc represent the value of z corresponding to location of
the minimum gap distance, we arrive at Eqns. (8a) and (8b),
where t(z) and κ(z) are the geometries of the through and
cross waveguides, respectively. Physically, for the through port
this represents the entire arc length of the through waveguide,

and for the cross port, it represents the sum of the through
waveguide arc length up to zc and cross waveguide arc length
after zc. Note for the case of the symmetric coupler, (i.e.
both the cross and through waveguides are identical) these
equations simplify since κ(z) = t(z) = g(z)

2 .

B. Leveraging Regression to fit Arbitrary Geometries

Given a waveguide geometry with a gap function g(z)
defining the gap throughout the coupling region, the effective
index estimation coefficients, aE , γE , aO, and γO, from Eqns.
(3a), (3b) must be found to perform the integrations (6a), (6b),
(8a), ant (8b) that calculate κ and t. These coefficients will
be dependent on the wavelength, width, and thickness of the
waveguide. To estimate these coefficients for all such com-
binations we performed a multivariate polynomial regression
on many different waveguide geometries. First we generate
data to gather these coefficients by running simulations using
a modified version of the finite difference eigenmode solver
WGMS3D [5], a 3D waveguide modesolver, with a custom
python wrapper pyMode [6]. To get effective index estimation
coefficients for a fixed geometry, an exponential regression
was run on simulations of two symmetric SiO2-cladded Si
waveguides with the gap distance varying between 100 and
1000 nm as seen in Fig. 1(b). This was repeated for over 7000

6 κ = exp

(
− j
(
π

λ

∫ zmax

zmin

aEe
−γEg(z) − aOe−γOg(z)dz +

2π

λ
neff

(∫ zc

zmin

√
1 + t′(z)dz +

∫ zmax

zc

√
1 + κ′(z)dz

)
+
π

2

))
,

(8a)

6 t = exp

(
− j
(
π

λ

∫ zmax

zmin

aEe
−γEg(z) − aOe−γOg(z)dz +

2π

λ
neff

∫ zmax

zmin

√
1 + t′(z)dz

))
, (8b)
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Fig. 3. (a) Diagram of half ring resonator. (b) Magnitude and (c) phase results for a Half Ring Resonator with closest gap distance of 100 nm. Waveguide
geometry is 450 nm width and 220 nm thickness. Plots are shown as a function of wavelength for 3 different radii, 5, 10, and 15 µm.

different waveguide geometries varying wavelength from 1450
nm to 1650 nm, width from 400 nm to 600 nm, thickness from
180 nm to 240 nm, and sidewall angles from 80 to 90 degrees.
In combination with the range of gaps, this resulted in over
75,000 simulations. The simulations were performed using
BYU’s supercomputer, with 1000 jobs running in parallel.
Each job used a single 2.3GHz core with 20GB of memory,
and took 5.5-8 hours to complete.

In addition, a multivariate polynomial regression was per-
formed that maps thickness, width, wavelength, and sidewall
angle to the effective index estimation coefficients. In this way,
the effective index estimation coefficients may be found for
any wavelength, thickness, width, and wavelength. Further-
more, we can accurately predict parameters outside the original
dataset to find a continuous set of effective index estimation
coefficients. The regression was trained using the python
package sklearn [7] resulting in a mean-square-error (MSE)
less than 10−5, which shows SCEE provides exceptionally
accurate estimates.

IV. SCEE VS. FDTD SIMULATIONS

A. SCEE Accuracy

To verify the results of the multivariate regression, 3D
FDTD simulations of half ring couplers as shown in Fig. 3(a)
were run using meep [8], an open-source FDTD solver. These
half ring couplers have waveguide geometries of width 450
nm, thickness 220 nm, and radii of 5, 10 and 15 microns. The
closest coupling gap was 100 nm for each radius.

Our predictions of κ and t were found using Eqns. (6a),
(6b), (8a), (8b) along with the multivariate regression and
SciPy’s quadrature routines[9] (to estimate the integrals) de-
scribed above. The results of the FDTD simulations and
our predictions are shown in Figs. 3(b) and 3(c). There is
good agreement between the two, with small errors in both
magnitude and phase.

B. SCEE Speed

To verify that SCEE also yields speed improvements over
full-wave techniques, we compared it to Lumerical’s varFDTD

Fig. 4. Speed comparisons of SCEE , Lumerical’s varFDTD and Lumerical’s
EME simulations for shown device with varying radii.

and EME methods. We simulated part of a ring resonator with
rings ranging from 5 µm to 40 µm and s-bends to straighten
the end of the waveguides. varFDTD simulations were run
with a non-uniform mesh setting of 4 to balance speed and
accuracy. The EME simulations were run with transverse mesh
settings ranging from 0.05 µm to 0.1 µm based on the location,
and a cell placed every 0.2 µm. SCEE was timed simulating
an identical model. The results and device are shown in Fig.
4, demonstrating that SCEE performed 1 order of magnitude
faster for 20 µm devices and nearly 2 orders of magnitude
faster for 40 µm devices.

We note that SciPy’s quadrature calculation routines are
known to have temporal complexity no worse than O(N),
where N is the number of integrand evaluations. Since SCEE
relies entirely on the speed at which the quadrature is com-
puted, it is scale invariant; meaning that even as devices get
larger, the number of integrand evaluations does not increase.
This can be seen in Fig. 4 as the total time of simulation is
approximately constant for SCEE as the radii increases. This
is in contrast to full-wave techniques, for which the simulation
times scales exponentially with model size.

SciPy’s quadrature calculation routines are adaptive, mean-
ing they will detect how many integrand evaluations N are
needed for accurate results. Interestingly, due to the smaller



JOURNAL OF LIGHTWAVE TECHNOLOGY 5

Optimizer Iterations

M
SE

Coupling Length (nm)

Co
up

lin
g 

G
ap

 (n
m

)

Waveguide
Control Points

(a) (b)

Fig. 5. (a) MSE for desired power splitting ratio as a function of optimizer iterations. Shows the evolution of coupler at iterations 10,000, 30,000, and 58,000
(b) Example of how control points were used to determine gap distance and thus waveguide geometry at each iteration of optimizing the directional coupler.

average spacing between waveguides g in the in the smallest
device simulated (5µm radius), the exponential terms in Eq. 6
are larger, and hence discretized more finely by the adaptive
routine, thus resulting in a greater simulation time when
compared to larger devices. This is clearly seen in Fig. 4,
in which the smallest device has the longest simulation time
using SCEE .

V. APPLICATIONS

To demonstrate SCEE’s utility, we describe three devices
simulated using SCEE that are (1) intractable to simulate using
traditional full-wave techniques, and (2) cannot be accurately
simulated with existing compact models. We first describe the
inverse design of directional couplers with arbitrary waveguide
geometries. We next describe a ring resonator coupled to a
single waveguide with two distinct coupling regions. Finally,
we describe a complex circuit consisting of >20 individual
directional couplers cascaded to form a unitary transformer.

A. Accelerated Inverse Design of Custom Power Splitters

Due to the speed of SCEE , we can effectively solve inverse
design problems. To illustrate this capability, we use SCEE
to design a directional coupler with a desired power ratio
from cross-port to through-port. Here we assume that the
input magnitude is unity so we only need to specify |κgoal|2
for the ratio (|t|2 = 1 − |κ|2). A different choice for the
input magnitude would simply create a scaling factor for the
outputs |κ|2 and |t|2. We create an inverse design optimizer
that takes as an input |κgoal|2 and outputs a directional coupler
geometry that produces the desired coupling ratio. The coupler
is parameterized by coupling length, zmax − zmin, and 16
discrete points, spaced evenly along the coupling length, that
define the gap between the two waveguides in terms of a
bezier curve (described below). This allows the optimizer
to easily manipulate the design of the coupler with fewer
degrees of freedom. The objective function of the optimizer
is the mean-square error (MSE) for four distinct wavelengths
evenly spaced between 1500-1600 nm of the power equation
−10 log10 |κ|2/|κgoal|2. For each iteration |κ|2 is calculated
at the four wavelengths using SCEE . Figure 5(a) illustrates
the evolution of the optimizer through approximately 58,000

complete simulations of a full directional coupler in less
than 60 minutes. This large number of iterations is only
feasible since SCEE computes each iteration much faster than
traditional solvers.

The waveguides in this example were chosen to be 220 nm
in thickness and 450 nm in width, although SCEE accepts
arbitrary width and thickness geometries. The optimizer uses
the nlopt python package[10] to perform the optimization, first
performing a bounded global optimization using the ISRES
routine with bounds of 0 to 1500 nm for the gap function’s
control points, then performing a local optimization using
the SLSQP routine on the results of the global optimization.
Among the various routines tested, these are the only ones
that both accepted the constraints detailed below and gave
consistently good results. We refer the reader to the nlopt
documentation for further details on the algorithms.

While we optimize over the control points of a gap func-
tion g(z), the designed waveguide does not necessarily pass
through these control points. Rather, the control points define
g(z) using the Bernstein transformation

g(z) = ĝ
( z

zmax − zmin

)
= ĝ(t) =

n∑
i=0

giBi,n(t), (9)

with t ranging from 0 to 1, where each gi is the gap value of
the ith control point, spaced evenly along the coupling length
and Bi,n(t) =

(
n
i

)
ti(1− t)n−i are the Bernstein polynomials.

Figure 5(b) shows the waveguide geometry and corresponding
control points for one iteration of the optimizer.

In order to produce physically realizable devices, several
constraints were imposed on ĝ(t). First, we required that
ĝ(t) ≥ 100 nm for every t, to ensure that the exponen-
tial regressions in Eqns. (3a) and (3b) remain valid. This
is accomplished by imposing a penalty on any iteration of
ĝ(t) that violates this constraint. Second, we require that
ĝ(0) = ĝ(1) = 1500 nm, thus ensuring that no coupling occurs
at the inputs or outputs. For simulation convenience, we also
impose several symmetries. We impose symmetry such that
ĝ(t) = ĝ(1− t), thus creating a waveguide that is symmetric
across the coupling length. The optimized directional coupler
also has waveguides that are mirror images of each other,
thus the g(z) is twice the distance from each waveguide
to the center line. These symmetries are illustrated by the
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Fig. 6. Comparison of output from SCEE vs FDTD for couplers optimized for |κgoal|2 = 0.10 and |κgoal|2 = 0.50. Shown is (a) |κ|2, (b) 6 κ in radians,
and (c) the resulting waveguide geometries with lengths 9 µm and 13 µm respectively.

vertical and horizontal dashed lines respectively in Fig. 5(b).
Finally, we impose a constraint on the waveguide curvature to
prevent bending loss. Specifically, we require that the radius
of curvature at any point along the waveguide is at least five
microns, or |K(t)| ≤ 1/5 µm−1.

Using this inverse design optimizer for directional couplers,
we found that any |κgoal|2 between 0.08 and 0.50 can be
obtained within 1.5 dB for wavelengths between 1500-1600
nm. In all cases, |κ|2 is within 1 dB of |κgoal|2 across at least
two-thirds of the target wavelength spectrum of 1500-1600 nm.
For an even smaller target coupling ratio of |κgoal|2 = 0.01,
the optimizer finds a solution within 2 dB of |κgoal|2 for the
entire wavelength range, and within 1 dB for 58% percent of
the range.

Figure 6 shows that simulations using SCEE and using
FDTD (using meep) are in very good agreement for two rep-
resentative directional couplers optimized to have |κgoal|2 =
0.50 and |κgoal|2 = 0.10.

A few remarks are useful to compare these results with
other emerging inverse design techniques using shape and
topology optimization. Shape and topology optimization (TO)
typically relies on adjoint variable methods (AVM) that effi-
ciently compute the gradient of the merit function with respect
to the degrees of freedom. Adjoint methods are especially
important when each optimization iteration is computationally
expensive (i.e. an FDTD simulation) and the user specifies
several degrees of freedom.

Our method, however, is computationally cheap and benefits
from relatively simple parameterizations. While implementing
an AVM that backpropagates the gradient through the ana-
lytical and regression inference models presented here would
be straightforward, SCEE is sufficiently fast to implement
classic gradient-free algorithms (both local and global) as
described above. Unlike classical TO methodologies, however,
we parameterized our example designs using splines and other
continuous functions, rather than polygonal points or density
voxels.

B. Doubly Coupled Ring Resonators

As a second example, we calculate the output spectrum
of a ring resonator which is coupled to a waveguide at two
locations as seen in Fig. 7(a). This is a potentially important
devices for implementing single-photon nonlinearities, and can
be used to improve the performance of quantum devices such
as single-photon sources and atom-like quantum memories
with photon interfaces [11].

Modeling of the doubly-coupled ring resonator demon-
strates two key aspects of SCEE . The first is the ability of
SCEE to accurately calculate both the phase and amplitude of
light within the simulated devices, and thereby construct the
full s-parameters of the device. The second is the ability of
SCEE to use the resulting s-parameters to cascade multiple
individual components to form a complex structure.

The ring was chosen to have radius 30 µm with waveguides
having thickness 220 nm and width 500 nm. The doubly
coupled ring resonator was modeled in SCEE as two separate
identical coupling regions, divided down middle, as shown
by the dashed line in Fig. 7(a). The scattering parameters
of each coupling region were calculated using SCEE , then
stitched together using a custom photonic toolbox simphony
[12]. The resulting spectrum is shown in Fig. 7(b) overlayed
with a simulation of an identical structure using Lumerical
varFDTD.

As we expect from double-coupled rings, the resonant spec-
tra of a single ring is modulated by an envelope resulting from
the interference condition imposed by the the two coupling
regions. Accurately modeling this complex interference pattern
would be impossible without carefully tracking the phase of
the field, demonstrating the power of SCEE . Notably, the free-
spectral range of both the resonant peaks and the envelope is
captured by SCEE . The magnitude of the envelope function
does not match perfectly, which we attribute to different
waveguide loss models in the two simulations.

C. Arbitrary Unitary Transformers using Cascaded Devices

As a final application example, we demonstrate the sim-
ulation of a complex unitary transformer consisting of tens
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Fig. 8. Cascaded couplers optimized for a 50/50 power split. Dashed lines represent port connections. Output port numbers change after relabeling ports

of individual couplers. The unitary transform we model is
shown in Fig. 8, and is known in the literature as a ”Green
Machine” [13], [14]. This device can be used as a superad-
ditive structured receiver for transmitting information across
an optical channel at a rate exceeding the classical Holevo
limit. Interestingly, it has yet to be implemented in an in-
tegrated photonic structure, though several researchers have
made attempts [13]. Here we simulate an 8x8 version of the
ideal Green Machine using directional couplers as described in
[14]. This Green Machine can be entirely composed of 50/50
directional couplers cascaded together, as shown in Fig. 8.
The solid lines represent components designed and simulated
using SCEE , and the dashed lines represent connections
implemented among these devices using simphony [12].

In this model we assume that the dashed lines are ideal
crossings, with complete power transfer and no phase off-
set. This represents an ideal Green Machine without errors,
whereas in non-ideal devices, errors may be introduced by
phase and amplitude deviations in the crossings. We include
these deviations in further simulations below. As shown above,
the 50/50 directional coupler does not split light evenly for
all wavelengths, but there is an optimal wavelength at which
it does, in this case λ0 =1546.0842 nm. By injecting light
at λ0 into any of the inputs 1-8, each of the output ports
9-16 will have equal magnitudes but different phases. After
relabeling the output ports, the explicit transfer matrix at λ0
for all combinations of inputs and outputs is given in Eqn.
(10). G3 can be defined recursively as Gn =

[
Gn−1 iGn−1

iGn−1 Gn−1

]
where G0 =

[
1
]
. Each Gn is a matrix with orthogonal

columns that allows for the creation of unique codewords for
a communication channel. Therefore, since the transfer matrix
is a constant multiple of G†3, it also creates unique codewords.
If a wavelength other than λ0 is used, the transfer matrix still
has orthogonal columns, but the output port magnitudes will
not be equal.

1√
8
G†3 =

1√
8



1 i i −1 i −1 −1 −i
i 1 −1 i −1 i −i −1
i −1 1 i −1 −i i −1
−1 i i 1 −i −1 −1 i
i −1 −1 −i 1 i i −1
−1 i −i −1 i 1 −1 i
−1 −i i −1 i −1 1 i
−i −1 −1 i −1 i i 1



†

(10)

Moreover, since all possible path lengths from input to
output are the same in this scenario for each wavelength, the
relative phase of light at the output ports can be written as a
matrix [see Eqn. (10)]. The rows represent output ports and
columns represent input ports. Each column of this matrix
is orthogonal to the other columns, enabling an orthogonal
basis for codewords with phase differences of π/2 radians.
Characterization of this device with light input to port 1 is
shown in 9(a) as simulated by SCEE .

We next introduced non-ideal crossover elements into the
Green Machine simulations in place of the ideal crossovers.
This was accomplished by using SCEE and the methods in
Section V-A to design a new directional coupler that outputs
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Fig. 9. (a) Output of ideal Green Machine (b) Magnitude output of crossover designed using SCEE and Section V-A

nearly 100% of the light to one of the outputs, and introducing
the resulting s-parameters into the the circuit simulation in
place of the ideal crossovers. The crossover coupler is such
that at the optimal wavelength λ1 = 1550.1629 nearly 100%
of the light is coupled to the cross port. The transmission vs.
wavelength of this coupler is shown in Fig. 9(b).

To preserve the phase relationship among devices, additional
waveguide lengths were also introduced to preserve the path
lengths at the crossings. The new device also produces a near-
ideal matrix at λ1 = 1550.1629, though it is rotated owing to
a π/2 phase shift introduced by the 100/0 directional couplers.

Modeling the Green Machine is dependent on having accu-
rate compact models of both a 50/50 directional coupler and a
100/0 directional coupler, both of which are enabled by SCEE
’s power to solve inverse design problems. Further, without
being able to track the phase of the field, the interactions
between each directional coupler in the Green Machine would
not be known, again showing the importance that SCEE is able
to compute full s-parameters. Finally, due to the large size,
traditional FDTD methods would take an intractable amount
of time to simulate the Green Machine, while SCEE simulates
it in less than a minute per wavelength.

VI. CONCLUSION

By extending the compact model for power splitting pro-
posed by M. Bahadori, et al [4], we have created a new
compact model that can simulate waveguides of any width,
thickness, and sidewall angle at at any wavelength. Further,
this model, SCEE , can handle arbitrary coupling geometries
allowing many new devices to be simulated. In addition, SCEE
also calculates the complete scattering parameters allowing
simulated devices to be stitched to form complex photonic
circuits composed of many elements.

These results show that SCEE can be used to accurately
and quickly simulate a wide variety of coupling devices.
SCEE is scale invariant and is orders of magnitude faster than
traditional full-wave methods. Thus devices can be simulated
with sufficient accuracy for quick design turnaround and SCEE
enables many new possible design tools due to it’s speed, in-
cluding inverse design. SCEE may also enable new accelerated

Monte Carlo methods for uncertainty quantification, which is
important for integrated photonic circuit design.

As illustrative examples, we have presented several appli-
cations using SCEE including power splitters, doubly coupled
ring resonators and a complex unitary transformer. SCEE
is open source and is available on github via the SiPANN
repository [15].
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