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Invariant Extended Kalman Filtering
for Underwater Navigation

Easton R. Potokar1, Kalin Norman1, and Joshua G. Mangelson1

Abstract— Recent advances in the utilization of Lie Groups
for robotic localization have led to dramatic increases in
the accuracy of estimation and uncertainty characterization.
One of the novel methods, the Invariant Extended Kalman
Filter (InEKF) extends the Extended Kalman Filter (EKF)
by leveraging the fact that some error dynamics defined on
matrix Lie Groups satisfy a log-linear differential equation.
Utilization of these observations result in linearization with
minimal approximation error, no dependence on current state
estimates, and excellent convergence and accuracy properties.
In this paper we show that the primary sensors used for
underwater localization, inertial measurement units (IMUs) and
doppler velocity logs (DVLs) meet the requirements of the
InEKF. Furthermore, we show that singleton measurements,
such as depth, can also be used in the InEKF update with
minor modifications, thus expanding the set of measurements
usable in an InEKF. We compare convergence, accuracy and
timing results of the InEKF to a quaternion-based EKF using
a Monte Carlo simulation and show notable improvements
in long-term localization and much faster convergence with
negligible difference in computation time.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) have the poten-
tial to dramatically improve safety, quality of life and general
scientific knowledge. Our coasts, lakes and rivers are filled
with various forms of marine infrastructure including dams,
bridges, ship hulls, communication lines, and oil rigs. Each of
these structures require regular inspection and current meth-
ods utilize divers, which is dangerous, expensive, and time
consuming. AUVs have the potential to alleviate these diffi-
culties and enable more regular inspection of these structures.
Furthermore, there are significant scientific discoveries in the
fields of geology, marine biology and medicine that AUV
exploration of our oceans will enable. However, successful
AUV utilization is dependent on effective localization.

Underwater localization is a particularly difficult problem
as many common land-based sensors such as GPS, LiDAR,
etc. are unavailable underwater. This limits many potential
options for use in a localization observer.

In this paper, we demonstrate how the Invariant Extended
Kalman Filter (InEKF) can be used to improve upon current
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Fig. 1: The Invariant Extended Kalman Filter (InEKF) leverages Lie Group
Theory to model robot state and error and results in improved convergence
and localization. In this paper, we derive the InEKF for use with common
underwater sensors such as an inertial measurement unit, doppler velocity
log, and pressure sensor.

methods of underwater localization. The InEKF is derived by
defining process models on matrix Lie Groups and showing
the resulting error dynamics satisfy a log-linear property.
This overcomes many of the shortcomings of Jacobian based
linearization used in the Extended Kalman Filter (EKF).
Specifically, we derive the InEKF for a vehicle equipped with
common underwater sensors such as an inertial measurement
unit (IMU), a doppler velocity log (DVL) and a pressure
sensor as seen in Fig. 1. More specifically, our contributions
are the following:

1) We show how to derive an InEKF for AUV localization
that utilizes the IMU for the process model and DVL
and a pressure sensor for correction.

2) We propose a novel method that enables the inclusion
of non-standard singleton measurements (such as depth
from a pressure sensor) into the InEKF via “pseudo”
measurements composed of the current state estimate
modeled with infinite covariance.

3) We evaluate our proposed method using simulated data
and compare it to a Quaternion EKF (QEKF).

We also explicitly show the change of frames required to
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put DVL measurements in the IMU frame as well as release
all our python source code as open source at https://
bitbucket.org/frostlab/underwateriekf.

The paper is organized as follows. Section II reviews
current methods and algorithms for underwater navigation
and uses of the InEKF. In Section III, we give a brief
background on Lie Groups and InEKFs. The InEKF for
underwater localization is derived in Section IV with Sub-
sections IV-B and IV-C reviewing the derivation of the
process model, and Subsections IV-D and IV-E deriving
the necessary measurement models. Simulation results and
comparisons with the QEKF are shown in Section V. Fi-
nally, Section VI summarizes the article and proposes future
research directions.

II. RELATED WORK

Underwater localization poses many challenges and a wide
range of solutions have been attempted in recent years, as
summarized in [1]. These methods can be broken into three
groups: filtering-based, direct-position measurement-based,
and mapping-based.

Filtering-based methods attempt to fuse multiple noisy
odometric measurements of the robot’s motion. Typical in-
puts to a filter for underwater localization include an IMU,
a DVL, and a pressure sensor. For linear systems with inde-
pendent measurements and Gaussian noise, the Kalman Filter
[2] provides an optimal fusion of these noisy measurements.
The most common filter in use today is the EKF [3] which
uses linearization to apply Kalman filtering techniques to
systems with non-linear process and measurement models.
Other methods such as the QEKF [4], try to improve on the
EKF by modeling the non-linear rotation elements of a robot
state using alternate representations.

While electromagnetic-based global positioning systems
such as GPS do not function underwater, acoustic position-
ing techniques such as long baseline (LBL) or ultra-short
baseline (USBL) [5, 6] are sometimes used. However, these
methods generally require extensive setup and often fail in
cluttered or shallow environments.

Mapping-based techniques such as simultaneous localiza-
tion and mapping (SLAM) [7–9] or terrain-based navigation
[10, 11] use features of the environment to overcome drift in
the robot’s odometry estimate. While these mapping-based
techniques correct for drift, they often rely on underlying
odometry solutions, such as the one we propose.

The InEKF is a recent extension of the EKF that is based
on matrix Lie Groups [12–15], in contrast to the quaternion-
based approach of the QEKF. Lie Groups have been shown
to propagate uncertainty estimates more accurately [16].
It derives its properties from the estimation error being
invariant under matrix multiplication, which is the action of
a matrix Lie Group [17, 18]. The InEKF has given rise to
many successful results and applications in SLAM [13, 19],
guided navigation [13, 20–22], and for 3D bipedal robots
[23].

The main advantage of the InEKF is due to the invariance
of the estimation error, often referred to as the symmetries
of the system, causing the error to satisfy a log-linear
differential equation on the Lie algebra, resulting in a state

independent trajectory in the error system dynamics. This
leads to no linearization approximations based on current
state estimates, and as a result strong convergence properties.
[15]. As far as we know, the InEKF has never before been
applied to AUV localization.

III. THEORETICAL BACKGROUND

In this section, we briefly explain the needed fundamen-
tals of Lie Group theory and use it to briefly explain the
derivation and important properties of the InEKF. This ends
in an outline of the InEKF in Algorithm 1.

A. Lie Group Theory
We denote a matrix Lie Group by G [24], and its associated

Lie algebra given by its tangent space as g, both of which
have n×n elements. Common examples of Lie Groups are
SO(3), which consists of 3D rotation matrices, and SE(3),
which consists of 3D rigid body transformations.

Further, we map Rdim g to the Lie algebra g of G at the
identity using the linear map

∧ : Rdim g → g.

Thus, along with the exponential map exp : g→ G, we can
map [24]

exp( · ∧) : Rdim g → G.
Throughout this paper, we also make use of the adjoint of

an element of G as defined below.
Definition 1: [24] For any X ∈ G, ξ ∈ Rdim g, the adjoint
map AdX : g → g is given by AdX(ξ∧) = Xξ∧X−1.
The adjoint is linear, and is often given by its matrix
representation as AdX(ξ∧) = (AdXξ)

∧.

B. InEKF Process Model
The state process model evolving on the matrix Lie Group

at time t and state Xt ∈ G can be given by
d

dt
Xt = fut(Xt).

Further, letting X̂t represent our state estimate, our state error
on the matrix Lie Group can be defined as follows.
Definition 2: [15] The right and left invariant error between
two trajectories Xt and X̂t is given by

ηrt = X̂tX
−1
t (Right Invariant), (1)

ηlt = X−1t X̂t (Left Invariant). (2)

Note in the case when X̂t = Xt, both errors reduce to the
identity. Using the above definition, the following theorems
are foundational in deriving the guarantees of the InEKF.
Theorem 1: [15] A system is said to be group affine if
fut( · ) satisfies

fut
(X1X2) = fut

(X1)X2 +X1fut
(X2)−X1fut

(I)X2

(3)

for all time t > 0 and X1, X2 ∈ G. If this condition is
satisfied, the right and left invariant errors are trajectory
independent and satisfy

d

dt
ηrt = gut

(ηrt ) , fut
(ηrt )− ηrt fut

(I), (4)

d

dt
ηlt = gut

(ηlt) , fut
(ηlt)− fut

(I)ηlt. (5)
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Note in the above, I ∈ G is the group identity matrix.
The above theorem results in a state independent differential
equation, meaning any linearizations made to gut will have
no dependence on the current state estimate. The right or left
error differential equation can then be linearized by defining
At to satisfy

gut
(exp(ξ∧)) , (Atξ)

∧ +O(‖ξ‖2). (6)

For t > 0, let ξt be the solution of the differential equation

d

dt
ξt = Atξt. (7)

This results in linearized error dynamics with 2nd order error.
However, the following theorem states that the true error can
be recovered from ξt with no approximation error.
Theorem 2: [15] Consider the right or left invariant error,
ηt, between any two trajectories. For arbitrary initial error
ξ0 ∈ Rdim g, if η0 = exp(ξ∧0 ), then for all t ≥ 0,

ηt = exp(ξ∧t ).

In other words, the nonlinear error ηt can be exactly
recovered from the time-varying linear differential eq. (7).

This implies the InEKF linearization of the invariant error
dynamics is trajectory independent when the conditions of
Theorem 1 are met, and thus by Theorem 2 introduces no
approximation error since the invariant error can be recovered
exactly, in contrast to that of the standard EKF. These
properties lead to many of the same guarantees that follow
the standard Kalman Filter, in particular local asymptotic
stability [15, Theorem 4].

Finally, noise can also be introduced into the deterministic
process model via

d

dt
Xt = fut(Xt)−Xtw

∧
t wt ∼ N (0, Q). (8)

C. InEKF Measurement Model
Furthermore, the InEKF requires measurement models to

fit the following form.
Definition 3: [15] Right and left invariant observations are
of the form

zrt = X−1t b+Wt (Right Invariant) (9)

zlt = Xtb+Wt (Left Invariant) (10)

where b is some known vector and Wt is zero-mean Gaussian
additive noise with covariance M . They have corresponding
innovations given by

V rt = X̂t(z
r
t − ẑrt ) (Right Invariant) (11)

V lt = X̂−1t (zlt − ẑlt) (Left Invariant) (12)

where ẑt is the measurement estimate using the current state
estimate.

These innovations make linearization simple using the first
order approximation ηt = exp(ξt) ≈ I+ξ∧t as follows [14].

V rt = X̂t(z
r
t − ẑrt ) = X̂t(X

−1
t b+Wt − X̂−1t b)

= ηrt b+ X̂tWt − b ≈ (I + ξr∧t )b+ X̂tWt − b
= ξr∧t b+ X̂tWt , −Hξrt + X̂tWt.

(13)

Algorithm 1: Right Invariant EKF

1 Σ̂ = Σ0;
2 X̂ = X0;
3 while receiving data do
4 if Predict Step then

5
d

dt
X̂ = fut

(X̂);

6
d

dt
Σ̂ = AtΣ̂ + Σ̂ATt +AdX̂QAd

T
X̂

;

7 else if Update Step then
8 S−1 = (HΣ̂HT + R̂MR̂T )−1;
9 K = Σ̂HTS−1;

10 X̂ = exp(KΠX̂z)X̂;
11 Σ̂ = (I −KH)Σ̂;
12 end

Fig. 2: Outline of the Right Invariant EKF.

The linearization for the left invariant innovation is near
identical. Further, since in most cases the last rows of these
innovations are identically zero, an auxiliary matrix Π =[
I 0

]
is used to remove them. The corresponding rows of

H are removed accordingly as well.
The resulting Right InEKF equations are seen in Algo-

rithm 1.

IV. UNDERWATER LOCALIZATION USING INEKF
In this section, we derive a Right Invariant Extended

Kalman Filter (RInEKF) for general applications in under-
water navigation. It uses an IMU motion model with bias
tracking for the prediction step, and the following sensors
for the predict step,
• DVL measuring velocity in the body frame, see eq. (33).
• Pressure sensor measuring depth, see eq. (36).

The pressure sensor model in particular doesn’t fit the
standard right invariant observation model, and we show the
required modifications for use in the InEKF.

A. State Representation
We seek to track the orientation, velocity and position

of the IMU (body) represented in the world frame, as is
common in aided inertial navigation. This can be represented
respectively by RWB ,W vWB ,W pWB , but for conciseness
we abbreviate these as Rt, vt, pt. For our purposes, we have
chosen the world frame to be an arbitrary point at the
surface, with a right handed system with the gravity direction
representing the negative z-axis, and x and y-axes parallel to
the water surface. Together, these state variables form the
group of double direct isometries, or the matrix Lie Group
SE2(3) [13]. An element Xt ∈ SE2(3) is a 5x5 matrix in
the form of

Xt ,

 Rt vt pt
01×3 1 0
01×3 0 1

 . (14)

Further, this Lie Group has an associated Lie algebra se2(3)
with an associated map ∧ : R9 → se2(3) defined as follows.
Given ξ ∈ R9
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ξ∧ =

ξRξv
ξp

∧ =

(ξR)× ξv ξp
01×3 0 0
01×3 0 0

 (15)

where ( · )× denotes a 3x3 skew-symmetric matrix such as,(ab
c

)
×

=

 0 −c b
c 0 −a
−b a 0

 . (16)

The adjoint is given by [23]

AdXtξ =

 Rt 0 0
(vt)×Rt Rt 0
(pt)×Rt 0 Rt

 ξ. (17)

B. IMU Motion Model
The IMU measurements of angular velocity and accelera-

tion are modeled as being corrupted by zero-mean Gaussian
noise as

ω̃t = ωt + wωt , wωt ∼ N (0,Σω), (18)
ãt = at + wat , wat ∼ N (0,Σa). (19)

Using these measurements, our continuous system dynamics
are then [23]

Ṙt = Rt(ω̃t − wωt )×
v̇t = Rt(ãt − wat ) + g

ṗt = vt

(20)

where g is the gravity vector. These continuous dynamics
can be written as elements of SE2(3) as

d

dt
Xt =

Rt(ω̃t)× Rtãt + g vt
01×3 0 0
01×3 0 0


−

 Rt vt pt
01×3 1 0
01×3 0 1

(wωt )× wat 0
01×3 0 0
01×3 0 0


, fut

(Xt)−Xtw∧t

(21)

where we have defined wt ,
[
wωt wat 03

]T
with co-

variance Q = block diag(Σω,Σa, 03×3). The deterministic
fut

( · ) can be shown to follow the group affine property (3),
and thus by Theorem 1, both the right and left invariant error
trajectories are state independent. As shown by Hartley, et
al [23], using the first order approximation ηrt = exp(ξrt ) ≈
I + ξr∧t in gut( · ) of eq. (4) results in

gut
(I + ξr∧t ) =

( 0 0 0
(g)× 0 0

0 I 0

 ξrt
)∧

, (Atξ
r
t )∧. (22)

Using the above derivation, our update step will be com-
puted using the following differential equations for state
estimate X̂t and state covariance Σ̂t

d

dt
X̂t =fut(X̂t) (23)

d

dt
Σ̂t = AtΣ̂t + Σ̂tA

T
t +AdX̂t

QAdT
X̂t

(24)

where At is defined as in eq. (22). Note the left invariant
error ηlt follows a similar derivation, but doesn’t result in a
constant At as the right invariant error does.

Algorithm 2: RInEKF for Underwater Navigation

1 H1 :=
[
0 I 0 0 0

]
;

2 H2 :=
[
0 0 I 0 0

]
;

3 Σ̂ = Σ0;
4 X̂ = X0;
5 while receiving data do
6 if IMU measurement then
7 X̂, b̂ = f̂ut

(X̂, b̂);
8 Φ =

exp

(
0 0 0 −R̂t 0

(g)× 0 0 −(v̂t)×R̂t −R̂t
0 I 0 −(p̂t)×R̂t −R̂t
0 0 0 0 0
0 0 0 0 0

∆t

)
;

9 Σ̂ = ΦΣ̂ΦT + ΦAdX̂,b̂QAd
T
X̂,b̂

ΦT∆t;
10 else if z = DVL Measurement then
11 z = RBDz + (BpBD)×(ω̃t − b̂ωt );
12 S−1 = (H1Σ̂HT

1 + R̂MvR̂T )−1;
13 Kξ,Kζ = Σ̂HT

1 S
−1;

14 X̂ = exp(KξΠX̂z)X̂;
15 b̂ = b̂+KζΠX̂z;
16 Σ̂ = (I −KH1)Σ̂;
17 else if z = Depth Measurement then
18 Σ̃ = (H2AdX̂t,b̂t

Σ̂AdT
X̂t,b̂t

HT
2 )−1;

19 S−1 = Σ̃− Σ̃
(
R̂TMzR̂+ Σ̃

)
Σ̃;

20 Kξ,Kζ = Σ̂AdT
X̂t,b̂t

HT
2 S
−1;

21 X̂ = exp(KξΠX̂−1z)X̂;
22 b̂ = b̂+KζΠX̂−1z;
23 Σ̂ = (I −KH2AdX̂t,b̂t

)Σ̂;
24 end

Fig. 3: Outline of RInEKF for underwater navigation. Included are (1) the
prediction step using IMU measurements, (2) the update step for DVL
measurements, and (3) the update step for depth measurements. H1 and
H2 are as defined in eqs. (35) and (39), respectively.

C. Tracking IMU Biases

Generally speaking, when using measurements from an
IMU sensor, it is also necessary to estimate the IMU bias for
accurate tracking. While the bias doesn’t fit into a Lie Group,
an “Imperfect InEKF” can be designed as in [13], that still
outperforms the standard EKF, even though it doesn’t have
the same guarantees as the standard InEKF.

The IMU biases can be modeled as slowly varying signals,
often done using Brownian Motion. Our models are as
follows,

ω̃t = ωt + bωt + wωt , wωt ∼ N (0,Σω),

ãt = at + bat + wat , wat ∼ N (0,Σa),

ḃωt = wbωt , wbωt ∼ N (0,Σbω),

ḃat = wbat , wbat ∼ N (0,Σba).

(25)

Along with the right invariant error that has been used, we
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define our bias error as

ζt =

[
b̂ωt − bωt
b̂at − bat

]
. (26)

By expanding the differential of the right invariant error as
done in [23], an augmented At and AdX̂t

can be found.

At ,


0 0 0 −R̂t 0

(g)× 0 0 −(v̂t)×R̂t −R̂t
0 I 0 −(p̂t)×R̂t −R̂t
0 0 0 0 0
0 0 0 0 0

 (27)

AdX̂t,b̂t
,

[
AdX̂ 012×6
06×12 I

]
(28)

We augment our original noise vector to be
wt ,

[
wωt wat 03 wbωt wbat

]T
with covariance

Q = block diag(Σω,Σa, 03×3,Σbω,Σba). The resulting
Kalman gain will be split in two as K =

[
Kξ Kζ

]T
.

Kξ will be used to update the state estimate X̂ via the
matrix exponential, while Kζ will be for updating the
bias estimate b̂ via vector addition. By assuming constant
IMU measurements between sampling, the deterministic
dynamics can be discretized using Euler Integration with
resulting equations [23]

R̂t+1 = R̂t exp((ω̃t − b̂ωt )∆t)

v̂t+1 = v̂t + R̂t(ã− b̂at )∆t+ g∆t

p̂t+1 = p̂t + v̂t∆t+
1

2
R̂t(ã− b̂at )∆t2 +

1

2
g∆t2

b̂ωt+1 = b̂ωt , b̂at+1 = b̂at

(29)

We use the shorthand X̂t+1, b̂t+1 = f̂ut(X̂t, b̂t) to represent
this discretized system. The resulting predict step can be seen
in lines 6-9 of Algorithm 2.

D. Velocity Measurements
A common sensor in underwater navigation, the DVL uses

acoustic waves to determine the velocity of the vehicle in the
DVL frame. We assume that the returned values are corrupted
by zero mean Gaussian noise as follows.

DṽWD = DvWD + wvDt , wvDt ∼ N (03,Σ
v) (30)

While it can be assumed the DVL and IMU reside in the
same frame for conciseness, in reality this is never the case.
For completeness, we show the transform here, since it is not
a standard rigid body transformation. Note there exists a rigid
body transformation RBD,BpBD between the body (IMU)
frame and the DVL frame. Given this, the transformation of
DṽWD to B ṽWB is given by [25]

B ṽWB = RBD ·DṽWD + (BpBD)×(ω̃t − b̂ωt ). (31)

The resulting covariance of B ṽWB propagated through this
transform is given by

Mv = RBDΣvRTBD + (BpBD)×(Σω + Σbω)(BpBD)T×.
(32)

We do this calculation before introducing the measurement
to the RInEKF and thus model the DVL in the IMU frame,

B ṽWB = RTt vt + wvt , wvt ∼ N (03,M
v) (33)

Put into the Lie Group, this has right invariant observation
structure as in eq. (9),B ṽWB

−1
0

 =

 RTt −RTt vt −RTt pt
01×3 1 0
01×3 0 1

03×1
−1
0

+

wvt
0
0

 .
(34)

We then linearize the right invariant innovation as in eq.
(13).

ΠV rt = ΠX̂t(z
r
t − ẑrt )

= Π

(ξRt )× ξvt ξpt
01×3 0 0
01×3 0 0

03×1
−1
0

+ ΠX̂tWt

= −
[
0 I 0

]
ξrt + R̂twvt , −H1ξ

r
t + R̂twvt

(35)

With a linearized innovation, we can use conventional
Kalman theory to derive the gain Kt and the rest of the
update step [14]. The resulting steps can be seen in lines
10-16 of Algorithm 2.

E. Depth & Singleton Measurements
The pressure sensor is another common underwater sen-

sor that is particularly useful as it returns a measurement
that is directly proportional to the z component of pt =[
pxt pyt pzt

]T
. Note in nearly all cases, the pressure sensor

is not located at the body frame, but can be trivially trans-
formed between frames using a rigid body transformation.
For conciseness, we assume it’s in the body frame. We again
model this with zero mean Gaussian noise as

W p̃
z
WB = W p

z
WB + wzt , wzt ∼ N (01, σz). (36)

In Lie Group form, this is similar, but not identical, to a left
invariant observation, as shown in eq. (10)

W z̃WB =
[
01×2 1 01×2

]  Rt vt pt
01×3 1 0
01×3 0 1

03×1
0
1

+ wzt .

(37)

However, the right and left multiplication of the state
makes linearization of the innovation as done in eq. (13)
impossible. Instead, we create “pseudo” measurements for
px and py to force the measurement into left invariant
observation form. We do this by giving these “pseudo”
measurements infinite covariance and measurements equal to
our current state estimate. These measurements immediately
cancel out in the left invariant innovation

V lt = X̂−1t

(
p̂xt
p̂yt
p̃zt
0
1

−

p̂xt
p̂yt
p̂zt
0
1


)

= X̂−1t


0
0

p̃zt − p̂zt
0
0

 . (38)
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Fig. 4: Both the QEKF and InEKF were run 100 times (offline) on the first 2 seconds of simulation data using the same noise statistics, initial covariance,
and initial starting point. Simulation data was generated by our in-house simulator based on Holodeck [26]. The initial starting point was randomly chosen
from a Gaussian centered around the true mean and with covariances shown in Table II. The above plots show the resulting trajectories, with the dashed
black line representing the true state. The RInEKF converged faster than the QEKF for all observable states and trajectories. Velocity is shown in the body
(IMU) frame, since yaw is unobservable [23]. Note that pitch and roll are Euler angles derived from the change of orientation between the local and world
frame, where we first rolled around the fixed x-axis, then pitched about the fixed y-axis, and finally yawed about the fixed z-axis.

Note measurements are given by ˜ and estimates by .̂ To
linearize ΠV lt , a similar linearization as done in eq. (13) is
performed

ΠV lt = ΠX̂−1t (zlt − ẑlt)
= −

[
0 0 I

]
ξlt + R̂Twpt , −H2ξ

l
t + R̂Twpt (39)

where wpt is the noise of our true measurement and “pseudo”
measurements.

However, note this linearization is about the left invariant
ξlt instead of ξrt . A simple transformation exists between the
two as follows

ηl = X−1t X̂t = X̂−1t X̂tX
−1
t X̂t = X̂−1t ηrX̂t

=⇒ exp(ξl∧) = X̂−1t exp(ξr∧)X̂t

= exp(X̂−1t ξr∧X̂t)

= exp((AdX̂�1
t
ξr)∧)

=⇒ ξl = AdX̂�1
t
ξr

(40)

Using this results in a linearized innovation as

ΠV lt = −H2AdX̂�1
t
ξrt + R̂Tt w

p
t . (41)

The infinite covariance of the “pseudo” measurements may
be approximated with a very large value. However, this can
cause problems if not made sufficiently large. Instead, it can
be determined analytically as follows. Note the only location
this infinite covariance, L, will be used is in the calculation
of Cov(ΠV lt )−1 = S−1 as follows

S−1 = lim
L→∞

(
H2AdX̂�1

t
ΣtAd

T
X̂�1

t
HT

2

+ R̂Tt

L 0 0
0 L 0
0 0 σz

 R̂t)−1 (42)

Note that limits may be passed into operations given they
are continuous and given the limit is finite after doing
so. The above equation satisfies the former since matrix
multiplication and inversion are both continuous operations,
but fails to satisfy the latter. However, by leveraging the
Woodbury matrix identity [27], which states given n×n
matrices A,B, we have

(A+B)−1 = A−1 −A−1(B−1 +A−1)A−1 (43)

Using this, and defining Σ̃t , (H2AdX̂�1
t

Σ̂tAd
T
X̂�1

t

HT
2 )−1,

we arrive at

S−1 = lim
L→∞

(
Σ̃t − Σ̃t

(
R̂Tt

L 0 0
0 L 0
0 0 σz

−1 R̂t + Σ̃t

)−1
Σ̃t

)

= Σ̃t − Σ̃t

(
R̂Tt lim

L→∞

 1
L 0 0
0 1

L 0
0 0 1

σz

 R̂t + Σ̃t

)−1
Σ̃t

= Σ̃t − Σ̃t

(
R̂Tt

0 0 0
0 0 0
0 0 1

σz

 R̂t + Σ̃t

)−1
Σ̃t (44)

, Σ̃t − Σ̃t

(
R̂Tt M

zR̂t + Σ̃t

)−1
Σ̃t

By using this closed-form solution of our limit, our
“pseudo” measurements are modeled as being infinitely
unreliable, and as such will be completely ignored by the
InEKF. Using this allows use of the depth measurement in
the correction step, even though it originally doesn’t fit the
structure of an invariant measurement. Leveraging this form
opens up the type of measurements that can be used by the
InEKF to include any form of singleton measurements, such
as the pressure sensor.

After applying all this, as before, general Kalman Filter
theory can be applied to derive the rest of the update step.
The results can be seen in lines 17-23 of Algorithm 2.
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Fig. 5: To test localization under increasingly uncertain initial positions, the QEKF and RInEKF were run 400 times on 100 seconds of simulation data
with initial standard deviations (std.) scaled by 0.5, 1, 1.5 and 2.0 times that of Table II. The initial starting point was randomly chosen from a Gaussian
centered around the true mean and with standard deviation as stated before. The resulting mean absolute error (MAE) of the last 5 seconds of estimates
was plotted vs the scale of the standard deviations. Notice how the RInEKF keeps a tight distribution of results even under high uncertainty, while the
QEKF increasingly fails to localize beginning even at standard deviation scale 1.0. Pitch and roll were defined as in Fig. 4.

Note since both of the sensor models have no dependence
upon the IMU biases, both H1 and H2 are appended with
zeros, as seen in Algorithm 2, and the augmented adjoint
AdX̂t,b̂t

is used.

V. RESULTS
To evaluate the RInEKF for underwater navigation, ex-

periments were done in our in-house simulator built upon
Holodeck [26] and Unreal Engine 4 with the vehicle as
seen in Fig 1. The vehicle was equipped with an IMU,
DVL and pressure sensor with noise statistics as shown in
Table I. The IMU was sampled at 200Hz, DVL at 20Hz and
pressure sensor at 100Hz. All results were compared to that
of a standard Quaternion-based EKF (QEKF) [4]. Note both
yaw and various bias states are unobservable, and are thus
not shown in these plots [23]. Since yaw is unobservable,
velocity is also shown in the body frame.

TABLE I: Simulation Noise Statistics

Measurement Type Noise std.
Angular Velocity .00009 rad / sec /

√
Hz

Linear Acceleration .0002 m / sec2 /
√

Hz
Gyroscope Bias .0003 rad / sec2 /

√
Hz

Accelerometer Bias .0001 m / sec3 /
√

Hz
DVL Sensor .02626 m / sec
Pressure Sensor .255 m

A. RInEKF Convergence
We tested convergence via a Monte Carlo method. A

simulation was run consisting of a simple descent of the
vehicle with thrusters slightly pushing forward. Then, each
filter was run 100 times for the first 2 seconds of simulation
with varying initial starting points. The starting points were
chosen by sampling from a normal distribution with mean
zero and standard deviation as seen in Table II. This sample
was then combined with the true starting mean via right
multiplication, exp(ξ∧)X . The results for pitch, roll, velocity
(in body frame), and z-component of position can be seen
in Fig. 4. Every trajectory converged faster than that of the
QEKF for each of the observable states.

B. RInEKF Localization
Similarly, we evaluated long term convergence under high

initial uncertainty and initialization error. This was done by
scaling the standard deviation of the sampled initialization as

shown in Table II by 0.5, 1.0, 1.5, and 2.0. The RInEKF and
QEKF were run 400 times, 100 for each standard deviation
scale, on the same 100 seconds of simulation data with
random initial starting points, chosen as in Subsection V-
A. The mean absolute error (MAE) was then calculated over
the last 5 seconds of filter estimates to evaluate performance.
Results are shown in Fig. 5. Note for the lower covari-
ance scales, namely 0.5 and 1.0, the QEKF and RInEKF
MAE routinely outperformed each other depending on which
simulation data was used. To counteract this, a simulation
run was chosen where they performed nearly identically
in these low covariance settings. Ideally, a Monte Carlo
simulation spanning all possible trajectories would be ran;
however, this space is much too big to sample sufficiently.
However, regardless of the trajectory, the RInEKF routinely
outperfomed the QEKF under high initial uncertainty, with
very similar results to that in Fig. 5 for all tested trajectories.

Notice how as the initial uncertainty increases, the QEKF
increasingly struggles to converge, even after 100 seconds
of run time. This is likely due to poor linearization points at
the beginning, as well as the QEKF struggling to handle
large initial uncertainty. On the other hand, the RInEKF
performance hardly shows a difference between poor and
perfect initial starting conditions, localizing extremely well in
both scenarios. This suggests that not only does the RInEKF
converge faster, but also more robustly from nearly any initial
position and covariance.

TABLE II: Initial Noise Covariance

State Initial std.
Orientation 30 deg
Velocity 2.0 m/sec
Position 1.0 m
Gyroscope Bias .005 rad / sec
Accelerometer Bias 0.05 m / sec2

C. RInEKF Timing

Further, due to the extra computation needed for the update
depth step as seen in Algorithm 2, it remained to be seen if
this would cause a significant delay in actual implementation
as compared to the QEKF. To test this, we ran each step of
each filter 3500 times in a Python implementation and plotted
the computation time distributions in Fig. 6 as a violin plot,
which plots the estimated probability density function.
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Fig. 6: Computation time comparison of RInEKF and QEKF, both imple-
mented in Python. Each filter step was run 3500 times and the resulting
computation time distributions can be seen above as violin plots. A violin
plot displays the estimated probability density function. Note the negligible
difference in computation time of the predict and update DVL steps. The
update depth step for the RInEKF has added complexity due to leveraging
the Woodbury matrix identity, but this complexity only contributes about
0.15 ms per iteration, small enough to not be a concern.

Notice that while both the predict and the update DVL
step had slight increases in time, these are rather negligible
and likely won’t impact performance significantly.

The update depth step did have an increase of about
0.15 ms. This is likely due to the extra steps required in
the Woodbury matrix identity along with the larger matrix
multiplications. The QEKF update depth step has a 1x15 H
matrix, along with a 1x1 S matrix as compared to a 3x15 H
and 3x3 S in the RInEKF, resulting in faster computations
than all the other update steps. However, the 0.15 ms gap
is small enough to be calculated between the sample rates
of our sensors and is likely to be even smaller in a C++
implementation. Thus, the 0.15 ms delay is a small price to
pay for the increased convergence and localization results
shown above.

VI. CONCLUSION

Using the recently developed InEKF, we derived an ob-
server for underwater navigation using common sensors in
the underwater regime such as an IMU, DVL and pressure
sensor. This observer seeks to track rotation, position, veloc-
ity and IMU biases. Further, we derived an extension to the
usual invariant measurement models to allow measurements
that only include part of a 3D state, such as a depth
measurement, opening the avenue to many sensor models to
be used in the InEKF. We then compared the RInEKF to a
Quaternion-based EKF with favorable results in convergence
and accuracy and comparable results in computation time.
Future work includes integration of other common underwa-
ter sensors such as sonar and camera-based sensors along
with comparison on real world data.
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