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Abstract: We present a novel silicon photonic parameter extraction tool that uses artificial
neural networks. While other parameter extraction methods are restricted to relatively simple
devices whose responses are easily modeled by analytic transfer functions, this method is capable
of extracting parameters for any device with a discrete number of design parameters. To validate
the method, we design and fabricate integrated chirped Bragg gratings. We then estimate the
actual device parameters by iteratively fitting the simultaneously measured group delay and
reflection profiles to the artificial neural network output. The method is fast, accurate, and
capable of modeling the complicated chirping and index contrast.
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1. Introduction

Interest in integrated optics continues to grow as silicon photonics provides an affordable platform
for areas like telecommunications, quantum information processing, and biosensing [1]. Silicon
photonic devices typically contain features with sub-micron dimensions, owing to the platform’s
high index contrast and years of complementary metal-oxide-semiconductor (CMOS) process
refinement.
While small features enable several innovative and scalable designs, they also induce an

increased sensitivity to fabrication defects [2]. A fabrication defect of just one nanometer, for
example, can cause a nanometer shift in the output spectrum of the silicon photonic device [3].
Understanding and characterizing these process defects is essential for device modeling and
variability analysis [4,5]. Predicting and compensating for such sensitivity in the optical domain
is difficult because typical simulation routines are computationally expensive and in many cases,
prohibitive.

To overcome these challenges, we propose a new parameter extraction method using artificial
neural networks (ANN). We train an ANN to model the complex relationships between integrated
chirped Bragg gratings (ICBG) [6,7] and their corresponding reflection and group delay profiles.
We use the trained ANN to extract the physical parameters of various fabricated ICBGs using
a nonlinear least squares fitting algorithm — a task that is computationally prohibitive using
traditional simulation routines. We find that the proposed routine produces spectra that matches
well the experimental reflection and group delay profiles for the ICBGs.

Our work builds upon previous efforts that extract integrated photonic device parameters using
analytic models. Chrostowski et al., for example, extract the group index across a wafer with
371 identical microring resonators (MRR) using an analytic formula describing the free spectral
range (FSR) [8]. Similarly, Chen et al. derive both the effective and group indices from MRRs
by fitting the full, analytic spectral transfer function to the experimental data [9]. Melati et al.
extract phase and group index information from small lumped reflectors knows as point reflector
optical waveguides (PROW) using various analytic formulas [10].
Perhaps most similar to this work, Xing et al. build a regression model from data generated

by an eigenmode solver that relates waveguide design parameters (e.g. width and thickness)
to their corresponding effective indices [11]. They subsequently use this regression model in
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addition to an analytic transfer matrix and a fitting routine to extract the average waveguide width
and thickness from various Mach-Zhender Interferometer (MZI) devices. Our ANN parameter
extraction method is fast, just like the analytic and regression models, but capable of modeling
much more complicated devices, like ICBGs.
The rest of the paper is outlined as follows: first, we describe the data generation process

necessary to train the ANN. Next, we describe the process of training the ANN. We then discuss
the ICBG device design, fabrication, testing, and data calibration. Finally, we describe our
nonlinear fitting algorithm and present our experimental results.

2. Relevant background

ANNs model the relationship between inputs and outputs by cascading various nonlinear
computational units known as neurons [12]. For a particular layer Dk, the output for each neuron
within that layer consists of a nonlinear activation function f (x) that transforms a weighted sum
of the output of the neurons from the previous layer Dk−1 and a bias term bi such that

Di = f (WkDk−1 + bi), (1)

where the linear transformation Wk contains a weight for every possible mapping from neurons
in the previous layer to neurons in the current layer [13].
ANN training algorithms like backpropogation tune the weights of these neurons until the

functional mapping adequately models the corresponding training set [14]. Several factors, like
the number of neurons, the number of layers, the activation functions, and even the training set
itself, influence the training accuracy and speed of the ANN. In addition, the ANN may learn
unintentional biases if the training set insufficiently represents the function space [15].

Consequently, it is important to adequately describe the ICBG using parameters that are simple
and intuitive for the designer, but also comprehensive and descriptive in order to fully span the
design space. To accomplish this, we parameterized the ICBG’s design space using the length of
the first ICBG period (a0), the length of the last ICBG period (a1), the number of gratings (NG),
and the ICBG’s corrugation width (∆w = w1 − w0), and the wavelength (λ). Figure 1 illustrates
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Fig. 1. Summary of the ICBGparameterization scheme and correspondingANNarchitecture.
(a) The ICBG is parameterized by the optical wavlength (λ) the length of the first period (a0),
the length of the last period (a1), the corrugation width difference (Deltaw), and the number
of grating periods (NG). (b) The trained ANN architecture that models the ICBG’s inputs
and the corresponding reflection (R) and group delay profiles (GD). The ANN consists of 8
deep layers with 32, 64, 128, 256, 128, 64, 32, and 16 neurons respectively. Each layer uses
hyperbolic tangent activation functions. (c) The corresponding reflection and group delay
profiles for the particular ICBG.
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an ICBG with each of these design parameters, along with our chosen ANN architecture. We
trained the ANN to output the reflection and group delay spectra of the simulated ICBG.

3. Data generation

To accurately and efficiently simulate the the ICBG reflection and group delay responses for our
training-set, we used a layered-dielectric media transfer matrix method (LDMTMM) accelerated
by machine learning waveguide models [16]. We could have opted to use other methods involving
coupled mode theory or even fully vectorial Maxwell equations solvers [17]. Generally speaking,
each method exchanges certain degrees of accuracy for computational simplicity and speed. The
LDMTMM method, however, provides sufficiently comparable results to fully vectorial methods
at a fraction of the computational cost [1].

The method discretizes the ICBG into individual dielectric slabs, models each slab as an ideal
waveguide, and propagates the fields through each slab using a transfer matrix. The effective
index of each section is modeled using another ANN that parameterizes the wavelength as a
function of waveguide width and thickness. This process is repeated for every wavelength point
of interest.
We simulated over 100,000 grating configurations at 250 wavelength points from 1.45 µm

to 1.65 µm resulting in approximately 25,000,000 training points (i.e. 100,000 gratings x 250
wavelength points = 25 million training samples). We swept through 10 different corrugation
widths, 11 different ICBG lengths, and 961 different chirping patterns. More information
regarding the dataset generation process is found in [16].
For a tool intended to perform parameter extraction on fabricated devices, it is important to

use a generalized and abstracted model insensitive to minor fabrication defects. For example,
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Fig. 2. ANNmodeling process. First, several different ICBGs are discretized into individual
dielectric layers (1). Then, the reflection and group delay profiles are simulated using the
transfer matrix method (2). The apodization dependent ringing is then filtered by fitting the
curves to modified Gaussians (3). This dataset is then fed into a ANN training algorithm
(4). Often, this process must be repeated until the ANN can suitably express a large enough
ICBG design space.
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small changes in the ICBG apodization profile greatly alter the expected spectral ringing, but
not necessarily the spectral bandwidth (assuming the index contrast is not dramatically altered).
Furthermore, parameterized high frequency ringing is rather difficult to capture efficiently using
ANNs. We overcame these challenges by fitting the LDMTMM group delay and reflection
profiles prior to training to a generalized skewed Guassian function of the form

f (λ, λ0,σ, β, a, p, c) = aσ
γ

e
−β |λ−λ0 |

γ

p

+ c (2)

where
γ =

2σ
1 + e−β(λ−λ0)

(3)

Our resultant dataset corresponds to a much larger and practical parameter space and significantly
alleviates the ANN training process.
Once the dataset was generated and processed, we proceeded to train the ANN. Often, this

process must be repeated until a suitable parameter space is simulated. This design flow is
illustrated in Fig. 2.

4. ANN training

To identify a suitable ANN architecture, we performed a hyper-parameter optimization (HPO),
where several ANNs with different architectures were simulated simultaneously. We swept
through common ANN architecture components, like the number of layers, the number of neurons
for each layer, each neuron’s activation function, and the batch size. We concurrently trained
1200 different ANNs on 1200 cores using Brigham Young University’s Fulton Supercomputing
Lab and the TensorFlow package [18]. Each simulation took approximately 12 hours. Figure 3

Fig. 3. Hyper-parameter optimization used to determine a suitable architecture for the
ANN. We swept through various parameters like the activation function (a), the optimizer’s
learning rate (b), the number of neurons (c), the number of layers (d), and the number of
batches per epoch (e). Each box and whisker plot illustrates the distribution of a particular
parameter with reference to its MSE after the final epoch. While some parameters showed
little influence (number of layers, activation functions, etc) others greatly affected the MSE
convergence (learning rate).

JBX-6300FS system operated at 100 keV energy [19], 8 nA beam current, and 500 µm exposure
field size. The silicon was removed from unexposed areas using inductively coupled plasma
etching in an Oxford Plasmalab System 100. Cladding oxide was deposited using plasma
enhanced chemical vapor deposition (PECVD) in an Oxford Plasmalab System 100.
To characterize the devices, a custom-built automated test setup [1] with automated control

software written in Python was used. An Agilent 81600B tunable laser was used as the input
source and Agilent 81635A optical power sensors as the output detectors. The wavelength was
swept from 1500 to 1600 nm in 10 pm steps. A polarization maintaining (PM) fibre was used
to maintain the polarization state of the light, to couple the TE polarization into the grating
couplers [20]. A polarization maintaining fibre array fabricated by PLC Connections (Columbus
OH, USA) was used to couple light in/out of the chip. The devices with 10 nm corrugation
widths failed to provide sufficient index contrast needed to measure a noticeable grating response,
and were omitted from the rest of the analysis.

To estimate the reflection and group delay profiles from the measurement data, we calibrated
out the band-limited spectral responses induced by the grating couplers, directional couplers, and
Y-branches. Figure 5 illustrates this process for both the reflection and group delay data. For the
reflection measurements, we first fit the data outside of the ICBG’s bandwidth to a fourth order
polynomial. We use this polynomial fit to remove the couplers’ responses. We then relocate the
noise floor by fitting, once again, the data outside of the ICBG’s bandwidth. We note that this
method is sensitive to fabrication defects within the grating couplers, which shift the center band
of the coupler’s response.

Various methods involving windowed Fourier transforms and curve fits are commonly used to
extract the group delay. We opted to estimate the free spectral range (FSR) of the interferometer
using a peak-tracking algorithm. From the FSR, along with the relative path length difference

Fig. 3. Hyper-parameter optimization used to determine a suitable architecture for the
ANN. We swept through various parameters like the activation function (a), the optimizer’s
learning rate (b), the number of neurons (c), the number of layers (d), and the number of
batches per epoch (e). Each box and whisker plot illustrates the distribution of a particular
parameter with reference to its MSE after the final epoch. While some parameters showed
little influence (number of layers, activation functions, etc) others greatly affected the MSE
convergence (learning rate).
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illustrates the HPO’s results. We measured the accuracy and effectiveness of each network by
tracking the mean squared error (MSE) and coefficient of determination (R2) for all simulated
permutations.

From the HPO, we chose to train an ANN with 8 layers. Each layer had 32, 64, 128, 256, 128,
64, 32, and 16 neurons respectively. Each neuron used a leaky ReLu activation function. No
dropout was used.

5. Device fabrication, measurement, and calibration

We designed 11 different ICBGs each with a linear chirp of 6 nm. We designed 5 of the devices
with a reversed chirping, such that their resultant group delay profiles would be mirror images of
their counterparts. Some devices were 750 grating periods long and the others were 250. We
chose corrugation widths of 30 nm and 50 nm. The devices with less than 750 grating periods
had too little SNR to reliably extract their grating parameters.

To efficiently extract the reflection, transmission, and group delay profiles of the same ICBG,
we designed an interrogator circuit using various Y-branches, directional couplers, and grating
couplers. Figure 4 illustrates the circuit. We used the grating couplers to direct light on and off
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Fig. 4. Interrogation circuit used to extract the reflection, transmission, and group delay
profiles of a single ICBG simaltaneously. First, light enters the chip via the second grating
from the top. It continues through a Y-branch splitter and a directional coupler until it
reaches the Bragg grating. The light transmitted through the Bragg grating leaves the chip
via the fourth grating coupler (light path in red). The Light that is reflected by the Bragg
grating returns through the directional coupler, where half of it is routed off the chip via the
first grating coupler (light path in blue). The other half of the reflected light is interfered with
the original transmission signal using the directional coupler and an additional Y-branch
(light path in green). This interference pattern is routed off of the chip with the third grating
coupler. The group delay is then extracted from this interference pattern.

(Lre f ) of approximately 200 µm, we can estimate the group delay (τ) using

τ(λ) = (Lre f − L(λ)) · ng(λ)
c

(4)

where
L(λ) = λ2

FSR · ng(λ) (5)

and ng(λ) is the group index of the reference arm waveguide. Given a sampling width of 10 pm,
the maximum peak detection error is within 20 pm. The peak tracking method consequently
predicts the group delay with 10 fs tolerances, well within the error induced by small scattering
defects.

6. Experimental Results

To estimate the actual fabrication parameters of the ICBGs, we used the ANN in conjunction with
a nonlinear least squares fitting routine within the SciPy package [21]. The routine initializes by

Fig. 4. Interrogation circuit used to extract the reflection, transmission, and group delay
profiles of a single ICBG simaltaneously. First, light enters the chip via the second grating
from the top. It continues through a Y-branch splitter and a directional coupler until it
reaches the Bragg grating. The light transmitted through the Bragg grating leaves the chip
via the fourth grating coupler (light path in red). The Light that is reflected by the Bragg
grating returns through the directional coupler, where half of it is routed off the chip via the
first grating coupler (light path in blue). The other half of the reflected light is interfered with
the original transmission signal using the directional coupler and an additional Y-branch
(light path in green). This interference pattern is routed off of the chip with the third grating
coupler. The group delay is then extracted from this interference pattern.
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of the chip. We routed the light using the Y-branches and directional couplers. We interfered the
reflection signal with the original reference signal using a Mach-Zhender Interferometer (MZI)
in order to measure the group delay information.

Our devices were fabricated at the University ofWashington in collaboration with the University
of British Colombia and the SiEPIC program on a 150 mm silicon-on-insulator (SOI) wafer
with 220 nm thick silicon on 3 µm thick silicon dioxide and a hydrogen silsesquioxane resist
(HSQ, Dow-Corning XP-1541-006). Electron beam lithography was performed using a JEOL
JBX-6300FS system operated at 100 keV energy [19], 8 nA beam current, and 500 µm exposure
field size. The silicon was removed from unexposed areas using inductively coupled plasma
etching in an Oxford Plasmalab System 100. Cladding oxide was deposited using plasma
enhanced chemical vapor deposition (PECVD) in an Oxford Plasmalab System 100.
To characterize the devices, a custom-built automated test setup [1] with automated control

software written in Python was used. An Agilent 81600B tunable laser was used as the input
source and Agilent 81635A optical power sensors as the output detectors. The wavelength was
swept from 1500 to 1600 nm in 10 pm steps. A polarization maintaining (PM) fibre was used to
maintain the polarization state of the light, to couple the TE polarization into the grating couplers
[20]. A polarization maintaining fibre array fabricated by PLC Connections (Columbus OH,
USA) was used to couple light in/out of the chip. The devices with 10 nm corrugation widths
failed to provide sufficient index contrast needed to measure a noticeable grating response, and
were omitted from the rest of the analysis.

To estimate the reflection and group delay profiles from the measurement data, we calibrated
out the band-limited spectral responses induced by the grating couplers, directional couplers, and
Y-branches. Figure 5 illustrates this process for both the reflection and group delay data. For the
reflection measurements, we first fit the data outside of the ICBG’s bandwidth to a fourth order
polynomial. We use this polynomial fit to remove the couplers’ responses. We then relocate the
noise floor by fitting, once again, the data outside of the ICBG’s bandwidth. We note that this
method is sensitive to fabrication defects within the grating couplers, which shift the center band
of the coupler’s response.

Various methods involving windowed Fourier transforms and curve fits are commonly used to
extract the group delay. We opted to estimate the free spectral range (FSR) of the interferometer
using a peak-tracking algorithm. From the FSR, along with the relative path length difference
(Lref ) of approximately 200 µm, we can estimate the group delay (τ) using

τ(λ) = (Lref − L(λ)) · ng(λ)
c

(4)

where
L(λ) = λ2

FSR · ng(λ) (5)

and ng(λ) is the group index of the reference arm waveguide. Given a sampling width of 10 pm,
the maximum peak detection error is within 20 pm. The peak tracking method consequently
predicts the group delay with 10 fs tolerances, well within the error induced by small scattering
defects.
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Fig. 5. Calibration process used to extract the measured reflection and group delay responses.
The reflection data is first fit to a fourth order polynomial outside of the expected bandwidth
in order to remove the grating couplers’ transfer function (a1). Next, the data is once again
fit to a fourth order polynomial outside of the device’s bandwidth to identify the noise floor
(a2). The data is then normalized to unit power (a3). Similar to the reflection data, the group
delay data is also fit to a fourth order polynomial to remove the grating couplers’ response
(b1). Next, the FSR is approximated using a peaktracking algorithm (b2). From the FSR,
the group delay is estimated (b3).

calling the ANN using the original design parameters. The simulated reflection and group delay
profiles are directly compared to the measurement data. From the residuals, the algorithm decides
whether the current design is sufficiently similar to the measurement data or if further simulation
is needed. The sufficiency criteria is determined by a difference in iteration mean-squared-error
(MSE) of 10−8. Figure 6 illustrates this procedure.

Since the ICBG has fabrication limits that can be cast as parameter bounds, we chose to
run a Trust Region Reflective (TRF) optimization algorithm within the nonlinear solver [22].
Specifically, we bounded the first and last ICBG periods (a0 & a1) between 312 nm and 328 nm
and the corrugation width between 1 nm and 50 nm. The number of periods was fixed.

We chose to extract parameters of three different ICBGs. After just 5 minutes of optimization
on a Macbook Air 2012 (1.8 GHz Intel Core i5, 4 GB 1600 MHz DDR3 RAM), the solver
converged on new parameters for all three devices that more reasonably reflect the measurement
data. Figure 7 illustrates the algorithm’s results compared to the fabrication data and the original
design spectra. Table 1
Not only do the algorithm’s profiles match the data much better, but the extracted parameter

differences are expected from the processes used to fabricate the devices. For example, the
algorithm predicts a slightly wider chirping bandwidth and smaller corrugation width for all
three devices. The E-beam raster grid’s resolution approaches the chirping resolution of the
ICBG (1 nm), so "snapping" from one grid point to the next results in slightly wider chirping
bandwidths. The E-beam’s resolution, along with the etch process, also tend to round the sharp
ICBG corners, resulting in lower net corrugation width.

Other small differences between the extracted parameter sets and the fabricated data, like the
fabry-perot resonances, are difficult to model with the current ANN abstraction. It would require
a much more sophisticated, and possibly impractical, parameterization to capture these defects.

Fig. 5. Calibration process used to extract the measured reflection and group delay responses.
The reflection data is first fit to a fourth order polynomial outside of the expected bandwidth
in order to remove the grating couplers’ transfer function (a1). Next, the data is once again
fit to a fourth order polynomial outside of the device’s bandwidth to identify the noise floor
(a2). The data is then normalized to unit power (a3). Similar to the reflection data, the group
delay data is also fit to a fourth order polynomial to remove the grating couplers’ response
(b1). Next, the FSR is approximated using a peaktracking algorithm (b2). From the FSR,
the group delay is estimated (b3).

6. Experimental results

To estimate the actual fabrication parameters of the ICBGs, we used the ANN in conjunction with
a nonlinear least squares fitting routine within the SciPy package [21]. The routine initializes by
calling the ANN using the original design parameters. The simulated reflection and group delay
profiles are directly compared to the measurement data. From the residuals, the algorithm decides
whether the current design is sufficiently similar to the measurement data or if further simulation
is needed. The sufficiency criteria is determined by a difference in iteration mean-squared-error
(MSE) of 10−8. Figure 6 illustrates this procedure.

Since the ICBG has fabrication limits that can be cast as parameter bounds, we chose to
run a Trust Region Reflective (TRF) optimization algorithm within the nonlinear solver [22].
Specifically, we bounded the first and last ICBG periods (a0 & a1) between 312 nm and 328 nm
and the corrugation width between 1 nm and 50 nm. The number of periods was fixed.

We chose to extract parameters of three different ICBGs. After just 5 minutes of optimization
on a Macbook Air 2012 (1.8 GHz Intel Core i5, 4 GB 1600 MHz DDR3 RAM), the solver
converged on new parameters for all three devices that more reasonably reflect the measurement
data. Figure 7 illustrates the algorithm’s results compared to the fabrication data and the original
design spectra. Table 1
Not only do the algorithm’s profiles match the data much better, but the extracted parameter

differences are expected from the processes used to fabricate the devices. For example, the
algorithm predicts a slightly wider chirping bandwidth and smaller corrugation width for all
three devices. The E-beam raster grid’s resolution approaches the chirping resolution of the
ICBG (1 nm), so ”snapping” from one grid point to the next results in slightly wider chirping
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Fig. 7. The extracted reflection (a1, a2, a3) and group delay (b1, b2, b3) profiles (yellow)
compared to the initial design profiles (red) and the calibrated measurement data (blue).

Fig. 6. Efficient and robust method to extract fabricated ICBG device parameters using
ANNs and a nonlinear least-squares optimizer. First, the ANN simulates reflection and
group delay spectra for the device’s initial design parameters (1). Then, the simulations
are compared directly to the measured data (2). If the results are sufficiently similar, the
optimizer returns the device parameters (3). If not, the optimizer strategically simulates a
new set of device parameters based on the residual error (4).
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compared to the initial design profiles (red) and the calibrated measurement data (blue).
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compared to the initial design profiles (red) and the calibrated measurement data (blue).
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Table 1. Parameter extraction results for three separate devices. The design parameters are
compared directly to the algorithm’s extracted parameters for each device.

Device 1 Device 2 Device 3

Design Parameters Design Extracted Design Extracted Design Extracted

a0 (nm) 324 324.3 318 315.8 318 320.1

a1 (nm) 318 317.0 324 325.6 324 323.7

NG 750 750 750 750 750 750

∆w (nm) 30 13.7 30 15.7 50 39.3

bandwidths. The E-beam’s resolution, along with the etch process, also tend to round the sharp
ICBG corners, resulting in lower net corrugation width.

Other small differences between the extracted parameter sets and the fabricated data, like the
fabry-perot resonances, are difficult to model with the current ANN abstraction. It would require
a much more sophisticated, and possibly impractical, parameterization to capture these defects.
Despite these small discrepancies, the fitting algorithm and ANN demonstrate a strong ability to
extract parameters for complex silicon photonic devices.

7. Discussion

We demonstrate a novel silicon photonic parameter extraction method using artificial neural
networks. Our method is capable of extracting parameters for complicated devices, like integrated
chirped Bragg gratings, without sacrificing the speed of traditional analytic methods. To validate
our method, we fabricated and measured various integrated chirped Bragg gratings and extracted
the actual parameters.
We are confident in the method’s accuracy, but also note several important considerations

that other researchers should take into account when implementing this approach. First, biases
induced by a dataset or the training process itself may not be readily apparent. While several
training techniques exist to monitor such problems [13], they do not guarantee that the model is
free from bias. Consequently, ”black-box” implementations of this method should be prefaced
by careful boundary case testing and verification as was performed for the devices presented
here. The current method’s rigorous data generation process and training procedure is further
described in [16] and adds significant confidence to this approach.

Second, this model’s parameterization scheme was rather basic and meant to characterize a few
essential ICBG parameters, rather than the device’s complete structural makeup. Future work
could continue to parameterize this model to encompass parameters like apodization and etch
depth. Despite this shortcoming, however, the current model sufficiently describes the parameters
that most directly affect the ICBG’s reflection and group delay profiles.
Machine learning models exhibit a unique property known as “transfer learning”, whereby

someone can take a preexisting model trained over a particularly narrow parameter space and
expand its knowledge domain by continuing to train over a new dataset [23]. This possibility
enables model “crowdsourcing”, where developers and designers simulate datasets relevant to
their particular problem and share a common model between everyone. We encourage this
mindset when both training, sharing, and using this parameter extraction framework.
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